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Summary

Knowledge of the spatial distribution of weed infesta-

tions over regional scales is essential for effective

management of source populations and to assess future

threats. To this end, the distributions of Nassella

trichotoma across a study area in south-east New South

Wales, Australia, were analysed using the geographically

local Getis–Ord Gi* spatial hotspot clustering statistic.

The clustering of N. trichotoma observations was ana-

lysed at three infestation levels: presence (at any

density), patch level and the occasional plant level.

The results indicate that there are c. 578 km2 of cells

containing N. trichotoma in strongly clustered infesta-

tions, 11.2 km2 within weakly clustered infestations

distinct from the main clusters, and 55 km2 that are

not clustered. There are 117 km2 of strongly clustered

patch level cells, 3 km2 in distinct but weak clusters, and

none outside of a cluster area. Of the occasional plant

level cells, 329 km2 are strongly clustered, 6.2 km2 are in

distinct but weak clusters, and 19 km2 are not clustered.

These results provide a mechanism by which control

efforts can be prioritized. The analysis approach des-

cribed in this paper provides a consistent, quantitative

and repeatable approach to assess weed infestations

across regional scales and can be applied to any weed

species for which spatial distribution data are available.
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Introduction

The assessment of the spatial distribution of weed

infestations over regional scales in a consistent, quan-

titative and repeatable way is essential for effective

management of source populations and for future threat

assessments. Spatial analyses of weed distributions

provide a tool to assist managers to prioritize control

options. This might be through identifying those infes-

tations that are of a controllable extent and density now,

those which will require longer-term control efforts, and

perhaps those that are beyond any current control

methods. Such analyses could also be used to provide

benchmark data against which the performance of

subsequent control measures can be assessed. Depend-

ing on what managers are trying to achieve, the analysis

results could also be used in association with other

spatial data such as site accessibility, soil and climate to

aid in further planning, or as inputs to spatio-temporal

modelling approaches to explore the potential spread of

the infestations over time and conduct scenario analyses

of the effect of possible control measures. However, the

methods commonly used to assess weed distributions

have potentially significant limitations when applied at

the regional scale.

A key issue for regional weed assessment is the scale

at which the problem is analysed. Most research into

the spatial analysis of weed distributions has focused

on the field scale rather than the regional scale (for

example Zanin et al., 1998; Dieleman & Mortensen,

1999; Colbach et al., 2000; Rew et al., 2001; Walter

et al., 2002; Ambrosio et al., 2004), with study areas

ranging from 190 m2 to 1.73 km2 (Rew & Cousens,

2001). While the analyses used by these researchers

were appropriate for field scale data, the spatial

complexity caused by environmental and spatial con-
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trols means that their analyses cannot be directly

extended to the regional scale. A method is needed that

can appropriately assess regional scale weed infesta-

tions in a robust manner and at an appropriate scale. It

is this issue of the analysis method that is addressed in

this paper.

There are many candidate weed species with regional

distributions. The focus in this research is on Nassella

trichotoma (serrated tussock) (Nees) Arech, for which

there is a spatially extensive data set of aerial observa-

tions across the Snowy River, Cooma Monaro and

Bombala Shires (local government areas) in New South

Wales (NSW), Australia (Figs 1 and 2).

The objective of this study is therefore to identify the

main hotspots of N. trichotoma infestations across the

study region, although the approach is applicable to any

weed species. Knowledge of these distributions will

enable managers to identify and prioritize their control

options, and serve as an indication of the possible source

of future expansions of the infestations. The analyses are

described following a consideration of the general

principles of spatial analysis of weed distributions and

the characteristics of N. trichotoma.

Spatial analysis of weed distributions

Maps of regional scale weed distributions (e.g. Fig. 2)

enable broad patterns to be discerned. However, while

providing very useful information about the scale and

extent of weed infestations, it is difficult to visually

compare such infestations across a regional study area in

the consistent, repeatable and objective manner required

to prioritize control efforts. Such an approach is possible

using spatial statistics, for which some general consid-

erations and approaches are now described.

The analysis of spatial data may be broadly categor-

ized into the spatially implicit and the spatially explicit

(Mackey & Laffan, 2002). Spatially implicit analyses

take no account of the spatial relationships among the

data, in ignorance of Tobler’s (1970) First Law of

Geography �That everything is related to everything else;

but that near things are more related than those far

apart�. Spatially explicit analyses account for this, and

quantifying the extent to which geographical phenom-

ena fulfil Tobler’s law is one objective of such analyses.

There are two main approaches for the spatially

explicit analysis of spatial data. These are the spatially
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Fig. 1 The study area is located in south-east NSW, Australia.
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Fig. 2 The distribution of N. trichotoma infestations across the study area.
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global and the spatially local. Both are normally

implemented using a moving window to define the

neighbourhood of sample locations used in the analysis,

for which any window shape may be used, provided it is

a reasonable representation of the process driving the

distribution (Laffan, 2002). A circular shape is most

often used because normally there is no certainty about

which driving process applies where.

The difference between global and local approaches is

in how the results are reported. Global approaches

summarize the spatial relationships in the data as a

single figure or graph. However, this represents the

system as an average process and can conceal important

local variations. It is also subject to the effects of spatial

non-stationarity and inconsistent anisotropy (directional

effects), particularly where distributions are not in

spatial equilibrium. Geographically local analyses are

often adaptations of global statistics, and result in a

geographic surface of results. This means that local

variations may be elucidated and that the analyses are

less susceptible to the effects of spatial non-stationarity.

The latter factor is particularly important when one

considers that spatial non-stationarity is to be expected

at regional scales. Local analyses require a more

consistent density of data than do global statistics but,

where such data are available, they usually produce

better results than global analyses because they can cope

with the effects of spatial non-stationarity (Fothering-

ham et al., 2002; Laffan & Lees, 2004; Laffan et al.,

2005).

The semivariance is perhaps the most commonly used

spatial analysis statistic (Eqn 1), and has previously

been used to assess the spatial structure of weed

infestations (Zanin et al., 1998; Rew et al., 2001; Walter

et al., 2002). When applied as a global statistic, the

semivariance is calculated as the average squared

difference between samples separated by some distance.

One can interpret the spatial structure of the phenom-

enon being studied when the semivariance is calculated

for multiple distances and plotted as a semivariogram.

An estimate of the proportion of variation that cannot

be explained as spatial structure is obtained by taking

the ratio of the nugget (the intercept of the variogram

with the Y-axis) and the sill (the value at which the

variogram plateaus). Of most interest for spatial distri-

butions is the distance at which the sill begins (the

range). This represents the distance to which the data are

correlated and there is spatial structure. The range can

also be interpreted as the average radius of spatial

clusters in a data set. However, when applied as a global

statistic representing an average process, the semivari-

ance will not reveal the local spatial variation required

for weed management when applied at the regional

scale. It also does not provide an indication of whether

the spatial relationship is of weed infestations, or if it is

of the absence of weed infestations:

cðdÞ ¼ 1

2nd

Xnd
i¼1

ZðxiÞ � ZðxiþdÞf g2 ð1Þ

where d is the lag distance for which the statistic is to be

calculated, nd is the number of neighbours of location i

at distance d. Z(xi) is the value at location i, Z(xi+d) is

the value at the neighbouring location at distance d.

As noted above, many local statistics are adaptations

of global statistics, although this need not always be the

case. Of the many possible approaches (e.g. Anselin,

1995; Whelan et al., 2001), the Getis–Ord Gi* hotspot

cluster statistic is of most use here (Getis & Ord, 1992,

1996; Ord & Getis, 1995). The Gi* statistic measures the

degree of spatial clustering of a local sample and how

different it is from the expected value (Eqn 2). It is

calculated as the sum of the differences between values

in the local sample and the mean, and is standardized as

a z-score with a mean of zero and a standard deviation

of 1:

G�
i ðdÞ ¼

P
j wijðdÞxj � W �

i �x
�

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnS�1iÞ�W �2

i
n�1

q ð2Þ

where i is the centre of the local neighbourhood, d is the

lag distance (bandwidth of the sample window), wij is the

weight for neighbour j from location i, n is the number

of samples in the data set, Wi* is the sum of the weights,

S1i* is the number of samples within d of the central

location (¼Wi* for a binary weights case), �x� is the mean

of the whole data set, and s* is the standard deviation of

the whole data set.

The Gi* statistic is two-tailed, so a score of )2 is as

clustered as a score of +2. The difference is that positive

values represent clusters that are, on average, greater

than the mean (the expected value if there were no

spatial clustering). Negative values represent clusters

that are less than the mean. If values are coded such that

high values represent weed infestations, then a positive

Gi* value represents a cluster of weed infestations. A

negative value in this case represents a cluster of samples

without weeds, or perhaps with only isolated weed

samples surrounded by samples without weeds. The

extent to which the Gi* value is greater or less than the

mean represents the strength of the spatial clustering in

that local sample. Given it is a z-score, Gi* values more

extreme than c. ±2 represent strong clustering, as 95%

of the data under a normal distribution should be within

2 standard deviations of the mean. A value of 3 therefore

means that the degree of clustering is more than 3

standard deviations more than what one would expect if

there were no spatial clustering. Values between ±2 may
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be interpreted as weakly clustered, with values being less

than 2 standard deviations away from what one would

expect if there were no spatial clustering. These thresh-

old values are, however, not exact because the correla-

tion of spatial data violates the assumption of

independence required for statistical significance. This

correlation is due to Tobler’s law and is, in any case, the

object of interest in this study.

Nassella trichotoma

Nassella trichotoma is native to the pampas grasslands of

South America. It is an important weed in Australia,

New Zealand and South Africa, with smaller infesta-

tions in France, Italy and Scotland (Campbell & Vere,

1995). Nassella trichotoma currently occurs in the south-

eastern parts of NSW and Victoria and parts of

Tasmania (McLaren et al., 1998; Parsons & Cuthbert-

son, 2001), with c. 7000 km2 of infested land in NSW

(Parsons & Cuthbertson, 2001). In the study region it is

classified as a class W2 noxious weed under the NSW

Noxious Weeds Act 1993, which means it must be fully

and continuously suppressed and destroyed. It is enough

of a problem overall in Australia to be designated a

Weed of National Significance (Agriculture & Resource

Management Council of Australia & New Zealand &

Australian & New Zealand Environment Conservation

Council & Forestry Ministers, 2000).

Nassella trichotoma plants have a basal diameter of

up to 15 cm, a height of up to 60 cm and a competition

suppressing leaf spread of up to 50 cm (Healy, 1945;

Campbell & Vere, 1995). Nassella trichotoma is tolerant

to most soil types, and grows on both fertile and infertile

soils (Healy, 1945). Each plant produces enormous

quantities of seeds each year (more than 140 000 per

plant), enough to infest a further hectare of land. Seed

densities in the upper 2.5 cm of soil have been estimated

at 444 000 000 ha)1 (Healy, 1945), and a dense infesta-

tion across 1 ha can produce 2 tonnes of seed (Parsons

& Cuthbertson, 2001). Nassella trichotoma is a long-

term problem because some portion of the seeds can

remain viable in the soil seedbank for over 20 years in

favourable conditions (Taylor, 1987 cited in Campbell,

1998). Further details on the physical characteristics of

N. trichotoma are given in Healy (1945), Campbell and

Vere (1995) and Parsons and Cuthbertson (2001).

The main problem posed by N. trichotoma is that it

has such a low protein (4%) and very high fibre (86%)

content (Campbell, 1982, 1998), making it unpalatable

and difficult for stock to digest. Heavy infestations can

reduce the carrying capacity of pastures by over 90%

(Campbell, 1998; Jones & Vere, 1998), while moderate

infestations cause a 40% reduction (Jones & Vere, 1998).

The economic impacts of N. trichotoma are severe, and

have been modelled in 1997 as costing the New South

Wales lamb and wool industry $AU40 million per year

(Jones & Vere, 1998).

The most common dispersal mechanism for N.

trichotoma is through wind, although longer distances

may be achieved through the movements of vehicles and

livestock (Campbell, 1998). Some panicles have been

observed blown 10 km from the source (Healy, 1945),

while Jones and Vere (1998) report distances up to

20 km. While wind dispersal may normally be over short

distances due to obstacles such as vegetation and fences,

the large numbers of seeds produced and the cumulative

dispersal over years can result in spatially extensive

infestations. Water also plays a role where stream bank

erosion and floods can redistribute soil containing

N. trichotoma seeds.

Nassella trichotoma is a complex, regional scale

problem for which there is no single management

solution. The currently available control measures for

N. trichotoma are preventive or reactive, depending on

the location and level of infestation (Campbell, 1998).

All control measures have their limitations, and the ease

with which the weed can be spread by wind, the large

number of seeds produced each year and the long

residence times in seedbanks mean that control measures

need to be conducted on a continuing basis. Preventive

options include fencing and other barriers to interrupt

the windborne spread of seed, or planting competitive

pastures. Reactive options range from manual chipping

of individual plants to spraying with herbicides such as

glyphosate and flupropanate. Airborne spraying can be

effective in combination with other control measures

such as planting competitive pastures (Campbell, 1974).

Jones et al. (2000) suggest that the most socially optimal

control option for low rainfall and low fertility areas is

to retire infested land and plant trees. Biological control

options are also under investigation (Briese & Evans,

1998; Briese et al., 2001).

Materials and methods

The study region

The study region consists of the Snowy River, Cooma-

Monaro and Bombala shires. It is c. 15 000 km2 in area

(Fig. 1), of which N. trichotoma occupies c. 710 km2. A

further 95 km2 of tussock have been observed under

management actions. The region has a cool, dry climate,

similar to the South American pampas grasslands where

N. trichotoma is native. Climate surfaces generated using

ANUCLIM (Houlder et al., 2000) indicate that annual

rainfall for the surveyed area varies between 495 and

1289 mm year)1, with 5%, median and 95% values

being 517, 607, and 872 mm year)1 respectively. The
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minimum temperature of the coldest period varies from

)4 to 0�C, with a median of )2�C. The maximum

temperature of the warmest period varies from 20 to

27�C, with a median of 24�C. The main land use is

grazing, although low rainfall and/or low fertility soils

make it marginal in many cases. With the low economic

returns on grazing comes a reduced ability for farmers to

control N. trichotoma infestations. These conditions,

along with the rugged topography in some areas of the

catchment, are identified by Vere et al. (1993) as

reducing the profitability of controlling the weed,

creating a detrimental feedback relationship.

The data set

A regional scale data set of N. trichotoma infestations

has been collected by aerial surveys over a 4-year period

from 2001 to 2004 by local government and landcare

agencies (Snowy River Shire, Cooma-Monaro Shire,

Bredbo Landcare, Nimmitabel Landcare, Berridale

Rocky Plains Landcare and Bungarby Landcare)

(Fig. 2). For most of the year such surveying is difficult,

as N. trichotoma resembles native tussock grasses

(Campbell, 1982). To allow for this, aerial surveys were

conducted at the end of winter when plants turn a

distinctive golden yellow colour and during flowering

periods when abundant purple seed heads are evident

(Parsons & Cuthbertson, 2001).

Surveys were conducted by helicopter, with flight

lines aligned approximately north–south and spaced

c. 400 m apart. The helicopter altitude was c. 20–25 m

above the ground surface (J. Clarke, pers. comm.).

Forward speed was c. 30 m s)1, consistent with Hyde-

Wyatt (1979). An observer in the helicopter called out

observations of N. trichotoma for areas on the ground

nominally 200–250 m on a side. Calls were registered by

a second operator using a computer with mapping

software interfaced with a differential global positioning

system (GPS). Calls used a four-class ordinal scale of

densities similar to that described in Jones and Vere

(1998) (Table 1), using representative aerial photo-

graphs as references for each class. The mapping

software stored GPS way-points at regular intervals

(this varied between surveys), and so an absence of N.

trichotoma (null data) is implied by a GPS co-ordinate

with no call made. In some cases the null data were

available as vectors of the helicopter flight lines. Other

weeds, evidence of N. trichotoma control measures, and

rabbit burrow densities were also recorded during the

survey, but were coded as null values for these analyses.

All data were stored and analysed using the Map Grid of

Australia, Zone 55, co-ordinate system.

There are three main sources of spatial error in the

surveys. First, there is a time delay between N. tricho-

toma being observed and the infestation code being

entered into the computer. This results in a spatial offset

along the helicopter flight line and varies between

observers and surveys. Second, the GPS and the

mapping software were sometimes out of synchroniza-

tion, usually resulting in groups of two to five observa-

tions (and up to 20) being assigned to the one GPS

co-ordinate. In these cases the first observation code

assigned is used. Third, an observer can sometimes

continue to call �runs� of infestation codes after the

density of plants has changed, for example where

scattered patches (C2) are observed for long periods

and it takes a short time to realize that the infestation

density has changed to dense patches (C1). This is most

common where infestation densities are near to the class

boundaries.

The spatial errors in the data set preclude its use for

detailed local planning. However, the highly dispersive

nature of N. trichotoma means that management is

normally conducted at the property scale, for which very

high accuracy is not needed. On-ground observations of

N. trichotoma infestations indicate the data are accurate

to this level of detail (T. Fletcher, pers. comm.). In

addition, the use of the Gi* index in a spatial window

means it acts as a spatial smoother, reducing the effect of

short range spatial errors. Following from this, any

N. trichotoma observations that do not fall within a

positive Gi* cluster might be errors in the observations

that can be verified using field surveys.

Despite its errors, the aerial survey method is very

cost effective in comparison with on-ground sampling

across regional scales (Rew & Cousens, 2001; Rew et al.,

Table 1 Classification system used for aerial observations of serrated tussock densities

Density class Percentage ground cover Description Area of observations (km2) Frequency of observations (cells)

C1 80–100 Dense patches 25 626

C2 50–80 Scattered patches 98 2440

C3 10–50 Scattered plants 179 4482

C4 <10 Occasional plants 410 10 253

Null None observed

Ground cover percentages are approximate and areas are based on 200 m by 200 m cells reported to the nearest km2.
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2001). The sampling approach is also advantageous in

that human observers are able to identify isolated

N. trichotoma plants. This is not possible using multi-

spectral remote sensing systems because of spatial and

spectral resolutions and associated mixed pixels (Lamb

& Weedon, 1998; Lamb et al., 1999; McGowen et al.,

2001). Such limitations might be overcome using hyper-

spectral remote sensing data, and any weed surfaces

derived from hyperspectral images could be used as the

input data for the approach described in this paper.

However, costs are currently high for hyperspectral data

with sufficiently fine spatial resolution across regional

scales (see Lass et al., 2005).

Data pre-processing

The density classes used for the aerial surveys are

arbitrary and have limited ecological meaning. An

analysis that pays strict attention to these classes will

propagate observer errors that occur when infestation

densities are near to the class boundaries. To alleviate

this effect the data were recoded into a series of indicator

classes, where locations that exceed a threshold are given

a value of 1 and all other locations are assigned zero.

This does not remove all of the classification uncertain-

ties, but does limit them to only one class boundary in

each analysis.

The indicator classes used here are: (1) the presence of

N. trichotoma at any density (where C1, C2, C3 and C4

are assigned a value of 1, Null is assigned zero); (2) patch

level infestations (C1 and C2 are assigned a value of 1,

C3, C4 and Null are assigned zero); (3) infestations

consisting of scattered plants, where C4 infestations are

assigned a value of 1 and all other values a zero (C1, C2,

C3 and Null). The three indicator classifications allow

an analysis of (1) the presence of N. trichotoma, (2)

patch level (possibly core) infestations, and (3) occa-

sional plants which may develop into patches but are

currently most easily controlled.

The continuous timed recording of GPS co-ordinates

by the mapping software means that there is an

overwhelmingly greater number of null data observa-

tions than there are N. trichotoma observations. This is

not realistic, as these null values do not represent

observations of an absence of N. trichotoma. They also

commonly occur within the on-ground observation area

for N. trichotoma records, and would distort the results

if retained as is. These null values must therefore be

resampled so they are spatially comparable with the

tussock observations.

To make the null records spatially comparable with

the N. trichotoma observations, the data set was aggre-

gated to a lattice with mesh points spaced 200 m apart

to represent the smaller range of the nominal on-ground

observation area. These were then converted to a raster

data set such that any cell containing an observation of

N. trichotoma was assigned that code. Cells containing

more than one N. trichotoma observation were assigned

the highest infestation code in the cell to allow for a

worst-case scenario. Cells containing only null records

were retained as a single null value.

The null data are essential for the Gi* statistic, as it

will otherwise return a biased representation of the

degree of spatial clustering. There are several areas of

the Cooma-Monaro surveys where no null data are

available along the flight lines, and so artificial null data

were generated. These were based on random values

using the Normal() function in ArcInfo GRID to

generate pseudo-random values using a Gaussian dis-

tribution. The Normal() function uses a pseudo-random

number generator with known flaws (Van Neil &

Laffan, 2003), but is adequate for this purpose because

the random values were thresholded to be included or

excluded. Different threshold values were assessed until

the distribution approximated that of the null data from

the remainder of the data set, where the distributions

were for the number of observations or thresholded

values within a five cell radius of observed N. trichotoma

samples. This is not an ideal way to generate the null

data, but is more reliable than visually estimating flight

lines from the N. trichotoma observations.

Spatial windows

The use of a local moving window gives local spatial

statistics a marked advantage over global statistics. They

remain, however, sensitive to the weights in the sample

window. A binary sample window, where all sample

observations are given equal weighting in the calcula-

tions, results in circular artefacts in the Gi* surfaces. The

relative rarity of N. trichotoma observations in compa-

rison with the null observations makes the arithmetic

mean of the whole data set close to zero, so even a single

observation will have an effect on the Gi* statistic,

normally resulting in a weak positive cluster (see Eqn

2). These artefacts are normally caused by an

N. trichotoma observation occurring near the edge of

the sample window. They are most pronounced when

the observations are spatially isolated, but can also

artificially extend the boundaries of a cluster. While

these artefacts are normally of low intensity, they are a

distraction in interpretation.

The effect of observations near the edge of the sample

window can be reduced using a weighting scheme. For

these analyses, the weights were assigned using a

bisquare function so that the contribution of sample

locations to the statistic decreases (decays) with distance

from the centre of the sample window (Eqn 3; Fig. 3).
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In simple terms, values closer to the centre of the

analysis window have a greater contribution to the result

than do values from further away. The bisquare function

has a Gaussian form and decays to zero at the edge of

the sample window (the bandwidth). Isolated locations

will still be identified, but their Gi* value will be greatly

reduced in intensity when they are near the edge of the

sample window:

wij ¼ ð1� ðd=bÞ2Þ2; d < b
0; d � b

�
ð3Þ

where wij is the weight, d is the lag distance between

central location i and sample j, and b is the bandwidth.

Implementation

The Gi* statistic was applied to the three indicator

classifications using the bisquare weighting function

within a circular window. To gain an understanding of

how the clustering changes with changing spatial scale,

the bandwidth of the sample window was varied from 1

to 6 km (5–30 cells) using a 1 km increment. These

results were then aggregated on a cell-by-cell basis to

generate surfaces representing the maximum positive

value across all analysis scales, and the scale at which the

maximum value occurred. Negative clusters, which

indicate clusters of no infestation or isolated observa-

tions, were assigned a value of )1 for display and

subsequent analysis purposes.

The fact that the seeds are easily dispersed, produced

in large numbers and can have long residence times in

seedbanks means that the most manageable N. tricho-

toma cases are the occasional plant infestations. Dense

core areas will require large amounts of effort over many

years before the weed is brought under control using

currently available control measures. Consequently, the

Gi* results were used to identify spatial distributions as

possible core infestations, possible less established

infestations, and occasional plants that may be man-

ageable.

To identify the three distribution types, any infested

cell with a maximum positive value exceeding 2

(Gi* > 2) was considered as part of a strong cluster of

infestations. Fringe areas with positive values where

0 < Gi* < 2 were not considered as part of these strong

clusters. Any infested cell that had a negative Gi*

response was considered as spatially isolated. These

should be more easily managed than those areas in

strong positive clusters. As noted above, these isolated

cases may also be errors in the observations that can be

verified using on-ground surveys. Any observation that

occurred within a weakly positive but spatially distinct

cluster (0 < Gi* < 2 and not part of the fringe or halo

of a strong positive cluster) may be less established and

therefore manageable, albeit not as easily as an

observation with a negative Gi* response. These may

also be a primary source of any future spatial expansion

of the weed distribution (Moody & Mack, 1988).

Semivariograms were also calculated to provide a

spatially global comparison for the Gi* results. These

used a lag size of 200 m and were calculated to a

distance of 40 km. This distance was used to assess if

any global structures were present beyond the sample

radius used for the Gi* analyses, and also because the

smallest axis of the sample data is 80 km across.

Samples beyond 40 km will be biased because the data

pairs from which the semivariance values are calculated

will be largely derived from the extremes of the data set.

Results

The semivariogram results (Fig. 4) are difficult to

interpret in exact terms. There are no distinct sills, and

there are clear fluctuations at c. 25 km for the presence

and isolated plants analyses. The patch level variogram

indicates a slight decline after c. 18 km. Some very

general interpretations are that the spatial distance to

which the data are related is c. 15 km for presence of

N. trichotoma, c. 10–15 km for patch scale infestations,

and c. 5 km for isolated cases. Comparison with the Gi*

results indicates that the clusters vary widely around

these values (Fig. 5). The ratio of the nugget to the sill is

also greater than 50% for each of the infestation levels

analysed (presence ¼ 62%, patch level ¼ 52%, isola-

ted ¼ 81%), indicating that a large proportion of the

variance cannot be explained as global spatial structure.

The Gi* results indicate that large areas of the study

region fall within N. trichotoma clusters with a Gi* value

of greater than 2, and that much of this area is

represented by a small number of large clusters (Fig. 5,
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Fig. 3 The bisquare weighting function decreases from a weight of

1 at distance zero to a weight of zero at the selected bandwidth (in

this case 5).
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Table 2). Approximately 14 448 cells (578 km2) of the

total 17 801 cells (710 km2) with N. trichotoma obser-

vations occur in strong positive presence clusters where

Gi* > 2. Similarly, 2918 cells (117 km2) of the 3066

patch level cells (123 km2), and 8215 cells (329 km2) of

the 10 253 occasional plant level cells (410 km2), occur

in strong positive clusters.

There are 1366 cells (55 km2) of N. trichotoma

observations with negative Gi* responses in the presence

analysis. There are also 468 cells (19 km2) of

N. trichotoma observations in the occasional plant

analysis that have a negative Gi* response, albeit 363

of these (14.5 km2) also occur within the presence

clusters where the Gi* score exceeds 2. The remainder

are scattered plant infestations (code C3), as none of the

patch level observations have a negative Gi* response for

the patch level analysis (Fig. 6).

There are also many spatially distinct, weakly posit-

ive clusters (Gi* < 2), with 155 presence, 79 patch level,

and 140 occasional plant clusters. These tend to be

small, with the median size 0.28 km2 for the presence

clusters, 1 km2 for the patch level clusters, and 0.48 km2

for the occasional plant clusters. These patches contain,

respectively, 280 cells (11.2 km2) of observations used in

the presence analysis, 74 cells (3 km2) of observations

for the patch level analysis, and 155 cells (6.2 km2) of

observations for the occasional plant analysis.
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The breakdown of infestation density classes within

the cluster types (Fig. 6) reflects the overall distribu-

tions, with frequencies generally decreasing as the

infestation level increases. The exceptions to note are

the absence of any patch level infestation cells in the

negative patch level clusters, and the higher number of

scattered plants in the negative occasional plant clusters.

Discussion

A comparison of the Gi* results with those of the

semivariograms indicates how much information is

suppressed by global spatial statistics when they are

extended to the regional scale. There is a wide spread of

the size of the local clusters around the variogramT
a
b
le

2
R
es
u
lt
s
a
g
g
re
g
a
te
d
a
cr
o
ss

a
ll
b
a
n
d
w
id
th
s,
in
cl
u
d
in
g
th
e
sp
a
ti
a
l
ex
te
n
t
a
n
d
fr
eq
u
en
cy

o
f
cl
u
st
er
s
w
it
h
a
G
i*
sc
o
re

>
2
(e
x
cl
u
d
in
g
fr
in
g
e
a
re
a
s
w
h
er
e
0
<

G
i*

<
2
),
th
e
n
u
m
b
er
s
a
n
d
a
re
a
s
o
f

o
b
se
rv
a
ti
o
n
s
in

th
re
e
cl
u
st
er

ty
p
es
:
st
ro
n
g
p
o
si
ti
v
e,

n
eg
a
ti
v
e
a
n
d
sp
a
ti
a
ll
y
d
is
ti
n
ct

w
ea
k
p
o
si
ti
v
e
(n
o
t
a
fr
in
g
e
co
m
p
o
n
en
t
o
f
a
st
ro
n
g
p
o
si
ti
v
e
cl
u
st
er
),
a
n
d
th
e
n
u
m
b
er

a
n
d
m
ed
ia
n
si
ze

o
f
sp
a
ti
a
ll
y

d
is
ti
n
ct
,
w
ea
k
ly

p
o
si
ti
v
e
cl
u
st
er
s

In
fe
s
ta
ti
o
n
le
v
e
l

T
o
ta
l
a
re
a

o
f
c
lu
s
te
rs

>
2
k
m

2

N
u
m
b
e
r
o
f

s
tr
o
n
g

p
o
s
it
iv
e

c
lu
s
te
rs

N
u
m
b
e
r
o
f

s
tr
o
n
g

p
o
s
it
iv
e

c
lu
s
te
rs

>
5
k
m

2

N
u
m
b
e
r
o
f

s
tr
o
n
g

p
o
s
it
iv
e

c
lu
s
te
rs

>
1
0
k
m

2

O
b
s
e
rv
a
ti
o
n
s

in
s
tr
o
n
g
p
o
s
it
iv
e

c
lu
s
te
rs

(G
i*

>
2
)

O
b
s
e
rv
a
ti
o
n
s

w
h
e
re

G
i*

£
0

O
b
s
e
rv
a
ti
o
n
s
in

s
p
a
ti
a
lly

d
is
ti
n
c
t

w
e
a
k
ly

p
o
s
it
iv
e

c
lu
s
te
rs

(0
<
G
i*

<
2
)

N
u
m
b
e
r
o
f
s
p
a
ti
a
lly

d
is
ti
n
c
t,
w
e
a
k
ly

p
o
s
it
iv
e
c
lu
s
te
rs

(m
e
d
ia
n
s
iz
e

in
b
ra
c
k
e
ts
)

P
re
s
e
n
c
e
(C
1
,
C
2
,
C
3
&

C
4
)

2
9
4
2

1
2
3

1
7

8
5
7
8
k
m

2
(1
4
4
4
8
c
e
lls
)

5
5
k
m

2
(1
3
6
6
c
e
lls
)

1
1
.2

k
m

2
(2
8
0
c
e
lls
)

1
5
5
(0
.2
8
k
m

2
)

P
a
tc
h
le
v
e
l
(C
1
&

C
2
)

1
6
2
4

7
4

1
8

1
1

1
1
7
k
m

2
(2
9
1
8
c
e
lls
)

0
k
m

2
(0

c
e
lls
)

3
k
m

2
(7
4
c
e
lls
)

7
9
(1

k
m

2
)

O
c
c
a
s
io
n
a
l
p
la
n
ts

(C
4
)

2
9
4
1

1
4
5

1
4

1
0

3
2
9
k
m

2
(8
2
1
5
c
e
lls
)

1
9
k
m

2
(4
6
8
c
e
lls
)

6
.2

k
m

2
(1
5
5
c
e
lls
)

1
4
0
(0
.4
8
k
m

2
)

A
re
a
s
a
re

b
a
se
d
o
n
a
2
0
0
m

b
y
2
0
0
m

ce
ll
si
ze
.
N
o
te

th
a
t
b
o
th

th
e
p
a
tc
h
le
v
el

a
n
d
th
e
o
cc
a
si
o
n
a
l
p
la
n
t
h
o
ts
p
o
ts

ex
te
n
si
v
el
y
o
v
er
la
p
w
it
h
th
e
p
re
se
n
ce

h
o
ts
p
o
ts

(s
ee

F
ig
.
5
).

A

0

0001

0002

0003

0004

0005

0006

0007

0008

0009

Occasional
plants

Scattered
plants

Isolated
patches

Dense patches

Infestation class

F
re

q
u

en
cy

 (
ce

lls
)

B

0

0001

0002

0003

0004

0005

0006

0007

F
re

q
u

en
cy

 (
ce

lls
)

Presence/Absence

Patch level

Occasional

C Weakly positive clusters

Strong positive clusters

Negative clusters

0

05

001

051

002

052

003

F
re

q
u

en
cy

 (
ce

lls
)

Occasional
plants

Scattered
plants

Isolated
patches

Dense patches

Infestation class

Occasional
plants

Scattered
plants

Isolated
patches

Dense patches

Infestation class

Fig. 6 The distribution of cells with each infestation category

within each cluster type and for each analysis level. (A) Strongly

positive clusters (Gi* > 2), (B) negative clusters (Gi* < 0) and (C)

weak positive clusters (0 < Gi* < 2 and spatially distinct).
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ranges, with a spatially variable anisotropy where the

clusters are aligned with the prevailing winds as they

flow along the valleys. It should, however, be noted that

previous research on the spatial structure of weeds have

been applied across small spatial extents, comparable

with the smaller analysis window sizes used in this

research (e.g. Zanin et al., 1998; Dieleman &Mortensen,

1999; Colbach et al., 2000; Rew et al., 2001; Walter

et al., 2002; Ambrosio et al., 2004). The issue at hand is

the extension of such global statistics to regional scales,

where one expects spatial non-stationarity, anisotropy

and the absence of an equilibrium state between current

weed distributions and the landscape. Spatial statistics

applied at the local scale across regions, such as Gi*,

provide a much better understanding of the spatial

distribution of the weeds.

Spatially, the N. trichotoma presence clusters occur in

three main groups located in the Snowy River and

Cooma-Monaro shires, one of which crosses into the

north-west corner of Bombala (Fig. 5). The infestations

in the surveyed part of Bombala shire are smaller and

generally of lower intensity than in the Cooma-Monaro

or Snowy River shires. This possibly reflects the distance

from source areas, but is expected to change if the

upwind infestations are not managed or if seed is

brought into the area.

The patch level observations occur almost exclusively

within strong positive clusters (97.5%, see Fig. 6),

indicating that development to patch level corresponds

with the development of core areas of N. trichotoma

infestation. The patch level hotspots most clearly follow

the major valleys along which the dominant westerly

winds are funnelled. This is particularly evident along

the Snowy River valley below Jindabyne (the south-

western clusters in Fig. 5). The largest patch level

clusters are in the Snowy River shire, followed by

Cooma-Monaro and then Bombala. These clusters are

often in nature reserves along difficult to access valleys,
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Kilometres

Observation in negative cluster

Major rivers

Lakes & reservoirs

Local government areas

Fig. 7 The spatial distribution of N. trichotoma observations that occur within negative clusters. The total analysis extent is superimposed

over the local government areas in white; 78% of the occasional plant observations fall within the presence clusters (363 of 468).
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compounding the effects of topographically controlled

wind dispersal.

The distribution of the occasional plant clusters

across the entire study area also indicates that large

areas could readily become patch level infestations if left

unmanaged. The breakdown of infestation type for the

occasional plant analysis (Fig. 6) indicates that occa-

sional plants are very often isolated from the main

infestations, which is where the denser infestation classes

occur. One should also note that the infestations in

Cooma-Monaro are largely occasional plants (C4 infes-

tations), while those in the Snowy River shire are of the

patch level. This is possibly because of observer bias

between surveys, but this is unlikely to occur across such

a large area because of the clear visual difference

between scattered and occasional plants and groups of

plants within a patch. It is more likely due to the less

rugged terrain in the Cooma-Monaro shire allowing

wind dispersal across a larger area from a large number

of isolated infestations, with the resulting infestations

yet to reach patch level (J. Clarke, pers. comm.).

In terms of management options, if one considers the

strong positive N. trichotoma clusters as core areas, then

these locations would be almost impossible to eradicate

with current control measures, and efforts focused on

containment may be the only practical option. Any

eradication efforts can then be focused on the N. tricho-

toma observations that fall outside of the strong positive

clusters, possibly beginning with those in the less rugged

terrain. This remains a complex task, as there are large

numbers of observations that do not occur within strong

positive clusters. However, the results indicate that these

are most commonly occasional or scattered plants,

requiring significantly less control effort per case than

the patch level infestations. These are also the infesta-

tions that should be focused on, as future expansion of

weed populations can be greater from such cases

(Moody & Mack, 1988). In addition, 363 cells

(14.5 km2) of the occasional plant (C4) observations

with a negative Gi* response occur within presence

clusters (Fig. 7), leaving 105 cells (4.2 km2) that do not

occur within a positive cluster. As noted earlier, some of

these could actually be erroneous observations that do

not require any control action.

Conclusions

Regional scale weed distributions are readily assessed

using local scale, explicitly spatial analysis techniques.

Local spatial statistics allows management approaches

to be prioritized in a consistent, objective and repeatable

way. The main clusters of N. trichotoma infestations

across a regional scale study area in Australia have been

identified, as have potential source areas for future patch

level infestations. The identification of these clusters

allows an understanding of where resources might be

applied to most effectively control weed infestations and

also where further investigations may be focused. This

was extremely difficult to achieve using visual assessment

of the original survey data in its raw form, and also

using a spatially global analysis method. In addition, the

effectiveness of any control actions could be assessed by

comparing the local analysis results for this and subse-

quent surveys, as well as monitoring the spatio-temporal

dynamics of the infestations. Only one weed species has

been considered in this research, but the analysis

approach is readily extended to other weed species at

regional scales where reliable data are available.
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